Read More" />
← Back to research

We present a practical implementation of a fully unsupervised disease progression model [10]. The implementation utilizes all new components we developed for generic use in Bayesian disease progression modeling. It improves upon [10] by providing a more informative fully Bayesian approach and a faster inference algorithm. The implementation is completely built on the pyMC3 open-source library making it easy to extend the model and apply to new settings.

Share on LinkedIn Twitter

Further reading